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Abstract
A turbulent-generated azimuthally symmetric radially sheared plasma fluid flow
is observed in a cylindrical magnetized helicon plasma device with no external
sources of momentum input. A turbulent momentum conservation analysis
shows that this shear flow is sustained against dissipation by the turbulent
Reynolds stress generated by collisional drift fluctuations in the device. In the
wavenumber domain this process is manifested via a nonlinear transfer of energy
from small scales to larger scales. Simulations of collisional drift turbulence in
this device have also been carried out and clearly show the formation of a shear
flow quantitatively similar to that observed experimentally. The results integrate
experiment and first-principle simulations and validate the basic theoretical
picture of drift-wave/shear flow interactions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Inhomogeneous magnetized plasmas with a finite pressure gradient transverse to the magnetic
field can develop ‘electron drift waves’ so-named because the waves propagate at the electron
diamagnetic drift velocity Vde. These waves can subsequently grow to large amplitude,
nonlinearly interact and develop into a turbulent spectrum. The theoretical properties of linear
drift waves are well understood and were verified in a series of experiments [8–12, 15, 37, 64].
In the simplest manifestation of drift waves, a magnetized plasma with finite electron pressure
and cold ions has a zeroth order azimuthal electron drift (needed to maintain equilibrium)
which is unstable to azimuthal perturbations. As a result, variations in plasma density and
electrostatic potential develop. In the presence of finite electron dissipation, rapid parallel
electron motion cannot short-circuit the potential variations and, as a result of the ensuing
fluctuating E × B guiding centre drift, the initial small amplitude perturbation can grow to
finite amplitude. For a concise physical picture of these linear aspects of drift waves see
e.g. [10].

Under some conditions, the drift wave linear dispersion relation permits three-wave
interactions to develop and, as a result, the drift waves can develop a spectrum of subharmonic
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and higher harmonic components [16,79] by means of progressive 3-wave (and higher order)
interactions which satisfy the frequency and wavenumber constraints ω1 + ω2 = ω3 and
k1 + k2 = k3 [68]. With strong enough pressure gradients, a large enough system and enough
parallel dissipation the coherent waves can become fully turbulent, resulting in the formation
of broad frequency and wavenumber spectra and rapid turbulent transport of plasma across the
confining magnetic field [47]. Drift instabilities are often classified according to the source
of free energy and type of dissipation as discussed elsewhere [52]. We have documented the
transition to drift turbulence in our device in a recent paper [5].

Most turbulent fluid flows are fully three-dimensional. In special cases, however, the
turbulence can be reasonably described as occurring in two spatial dimensions. Examples
of 2-d fluids include the thin atmospheres of terrestrial type planets, the atmospheres of
rapidly rotating stars and gas giant planets, magnetized plasmas, rotating water tanks and
stratified flows [6]. The distinction between two and three dimensions is important. In 3-d
turbulence a finite strain field ∂vz/∂z �= 0 causes vortex tube stretching (here z is aligned along
the vortex axis), allowing both enstrophy production and energy transfer to smaller spatial
scales where energy is dissipated by viscosity [65] in a process referred to as the turbulent
energy cascade. In 2-d turbulence by definition the strain field vanishes, i.e. ∂vz/∂z = 0
and thus vortex tube stretching does not occur. As a result a dual cascade of energy and
enstrophy occurs wherein the kinetic energy of the flow is transferred to the largest spatial
scales in the system while the enstrophy is transferred to the smallest spatial scales [51].
When two like-signed vortices approach each other they merge into a larger scaled single
vortex that does not suffer vortex stretching. As the merging process can then be repeated
many times, progressively larger scaled structures can form. Eventually the kinetic energy
of the flow condenses into long-lived, large-scale coherent structures [58, 75] and zonal flows
[33, 35]—a picture that is fundamentally different from that of three-dimensional turbulence.
The practical importance of these organized structures lies in their impact upon turbulent mixing
and transport. For instance, self-generated zonal flows [33] and streamers [2,21] represent two
prominent examples of coherent structures relevant to magnetically confined plasmas which
significantly impact turbulent transport.

As discussed earlier, in 2-d turbulent flows a condensation of the kinetic energy into a
large-scale sheared zonal flow can occur. Such flows are thought to occur in magnetic fusion
energy confinement devices; similar flows are also observed to exist in planetary and stellar
atmospheres. These sheared flows are thought to be the result of such an inverse cascade, and
thus are driven by nonlinear transfer of flow energy from the turbulence into the large-scaled
shear flow via a three-wave coupling process satisfying the criteria k′ + k′′ = kZF where k′, k′′

denote turbulent fluctuation wavenumbers and kZF denotes the zonal flow wavenumber and
in the idealized case |k′|, |k′′| � |kZF| [19] (we also note that higher order processes may
be important as well [13] but here we focus upon the lowest order physics). The essential
elements of this theoretical picture have been recently summarized in a review article [20].

Due to the importance of the problem a number of experimental studies of zonal flows have
recently appeared in the literature. Probe measurements in the HT-6M tokamak device [82]
show that the evolution of the turbulent Reynolds stress is consistent with the formation of the
initial shear layer during a transition to improved Ohmic confinement in that device. Once
the bifurcation event has been completed, strong radial ion pressure gradients can then act to
sustain mean shear flow. An examination of probe data from the CCT, PBX-M and DIII-D
devices showed that nonlinear coupling between low-frequency and higher frequency potential
fluctuations exists and that this coupling evolves immediately prior to the L–H transition in
the DIII-D tokamak [61, 77]. However these results provide no indication of the causality
of the transition. In a series of papers Shats and co-workers [70–72,80,81] have shown that
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low-frequency oscillating shear flows exist in the H-1 heliac device, that these shear flows
modulate turbulent particle transport and are sustained by a transfer of energy from higher
frequency turbulent fluctuations into low-frequency oscillations. These observations have
many similarities to theoretical expectations for zonal flows in magnetic fusion confinement
devices; however, the ions are unmagnetized in these experiments and thus the results may not
be directly comparable with either existing theory [20] or to expectations for large magnetic
confinement experiments. In the work on the CHS device, HIBP measurements have shown
clear evidence of the existence of toroidally and poloidally symmetric time-varying shear
flows in the core region of a toroidal device which are consistent with expectations for zonal
flows [24]. There have also been observations of zonal flows in DIII-D using phase contrasting
imaging [17] and applications of velocity inference techniques to beam emission spectroscopy
measurements [42,57], and in the ASDEX machine via Doppler reflectometry [18]. A complete
experimental demonstration of turbulent-generated shear flow requires several observations to
be made in the same experimental apparatus. First, the existence of shear flow with correct
symmetry properties (e.g. in a cylindrical plasma shear flow would be azimuthally symmetric)
must be demonstrated. Second, shear flow must be maintained against damping mechanisms
by the turbulent Reynolds stress or, equivalently [77], by the transfer of fluctuation energy from
smaller turbulent scales into the larger shear flow scale via nonlinear mode–mode coupling
processes. Third, the resulting shear flow must be of sufficient magnitude that it reduces or
eliminates turbulent transport across the shear layer. Finally, this process should be consistent
with a relevant theoretical description of the turbulence generation and shear flow maintenance
mechanisms.

In this paper we provide experimental evidence that all these criteria are met during the
development of a shear layer in a simple plasma system. In particular we provide evidence that a
transfer of energy from collisional drift turbulence fluctuations with intermediate wavenumbers
(0.2 < kθρS < 1) into linearly stable small wavenumbers (kθρS < 0.1–0.2) occurs. We show
that these small wavenumber fluctuations correspond to an azimuthally symmetric radially
sheared E × B plasma flow and we provide measurements of the turbulent particle flux
and turbulent Reynolds stress. Using these results in the turbulent momentum conservation
equation, we show that the observed shear flow is maintained against the estimated damping
by these turbulent fluxes. Finally, we carry out a fluid-based two-field turbulence simulation
of the experiment in the real geometry of the experiment. The simulation results are in
quantitative agreement with the experimentally observed shear flow and they show how shear
layer formation naturally emerges from the merging of tilted anisotropic vortices that emerge
from the linear eigenmodes during the nonlinear saturation of the turbulence. This phenomena
is a time–space domain representation of the inverse energy transfer process which is expected
to occur in wavenumber space and is completely consistent with our experimental observations.

2. Experimental apparatus

The CSDX plasma source used an azimuthally symmetric half-wavelength helicon antenna
operating at 13.56 MHz with 1500 W of forward power (less than 20 W are reflected and
measurements indicate a high (80–90%) coupling efficiency with the plasma) with an argon
gas pressure of 3.0 mTorr. The device exhibits the usual signs of helicon mode operation (i.e.
equilibrium plasma density n0 proportional to magnetic field B, transition to high density
operation (n0 > few × 1012 cm−3 ) for high enough B field (>400 G) and high enough source
power (∼1 kW) and high enough fill pressure (>1 mTorr argon).

The present plasma source radius is approximately 4.5 cm, and is connected to a
downstream chamber approximately 3 m long and having a 10 cm radius which is immersed
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within a solenoidal magnetic field of up to 1 kG. The field lines located within r < 4.5 cm
terminate on insulating surfaces in the plasma source, while source region field lines with
r > 4.5 cm terminate on an insulating plate that covers the flange that mates the plasma
source to the downstream chamber. On the other end of the device the field lines terminate
on a series of ten concentric biasable end rings located 160 cm downstream of the plasma
source exit which can be used to impose a radial electric field and azimuthal plasma flow.
In the region beyond the end ring assembly, the vacuum chamber walls are covered with a
thin sheet of teflon to prevent the diverging field lines, which pass through the gaps located
between the end rings, from contacting a conducting surface. In all the experiments reported
here, the end rings are left electrically isolated, prohibiting radial plasma currents (and thus
azimuthally directed torques) from existing in the plasma. All the data shown in this paper
are obtained at a distance of 75 cm downstream from the exit plane of the plasma source,
approximately half the distance from the source exit to the end ring assembly. Detailed
spatio–temporal measurements of equilibrium and fluctuating density, potential and electron
temperature are made with various moveable probe arrays. Line averaged ion and neutral gas
temperatures are measured using an optical fibre that transmits a central plasma chord view
to a high-resolution spectrometer. A detailed description of the plasma source and fluctuation
characteristics, mode identification and transition to turbulence can be found in the literature
[5, 26, 76].

3. Experimental results

Data showing typical time-averaged plasma density and electron temperature profiles are shown
in figures 1(a) and (b) below. Measurements in CSDX show the onset of low frequency
(few kiloHertz) density and floating potential fluctuations (ω � �Ci

) with peak amplitude
near the maximum in grad-n0 for magnetic fields above a critical value (400–500 G) such
that ρS/Ln ∼ 1. The rms-floating potential fluctuation amplitude is shown in figure 1(c).
Frequency-resolved radial profiles of the floating potential fluctuations are shown in figure 1(d).
The measurements near onset conditions show these fluctuations are low order (m = 1–6)
azimuthal drift wave eigenmodes propagating in the electron diamagnetic direction. As the
magnetic field is increased a controlled transition to drift turbulence then occurs [5]. Thus we
conclude that we can produce coherent drift wave oscillations and a controlled transition to
drift turbulence in this device by using the external magnetic field as a control parameter.

During the evolution to turbulence we observe a gradual increase in the importance of
three-wave coupling as evidenced by the large increase in the bicoherence, which measures the
degree of phase coherence between different frequencies [5]. Density and potential fluctuations
are highly correlated (power weighted average cross-coherence is ∼0.7 or higher) and have a
small phase shift (power-weighted average phase delay is ∼0.2 rad or less)—results that are
all consistent with the existence of collisional drift fluctuations in this plasma. When strong
enough (i.e. at high enough magnetic field) these wave–wave interactions produce broad spectra
as shown in figure 2, which shows the local wavenumber spectrum obtained at r = 3 cm (i.e.
in the strong density gradient region) using the two-point technique [1]. As the magnetic field
is raised from 500 to 1000 G a state of turbulence is approached and we observe the ‘filling
in’ of the kρs < 1 portion of the energy spectrum Ek = (n2

k/n2
0) + k2

θ (eφk/kBTe)
2 (figure 3),

which is obtained by integrating the two-point density and potential fluctuation spectra n2
k/n

2
0

and (eφk/kBTe)
2 over all frequencies. A detailed discussion of this transition to turbulence

is given elsewhere [5], and we also note that these fluctuations appear to be quite similar to
those reported earlier by Light et al [54] in another helicon plasma device similar to that used
in our work. We have also shown elsewhere [78] that the low k region (kθρS < 0.1–0.2) is
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Figure 1. (a) Time-averaged plasma density profile. (b) Time-averaged electron temperature
profile. (c) Floating potential RMS-fluctuation profiles for low-frequency m ∼ 0 and higher
frequency finite m fluctuations. (d) Radially resolved floating potential frequency spectrum.

linearly stable (figure 4). Thus the appearance of finite energy in this portion of the spectrum
as the turbulent state is approached implies that these low k fluctuations are driven via some
nonlinear process. We thus conclude that the evolution of the drift fluctuations in the CSDX
apparatus is consistent with the existence of an inverse energy transfer from drift turbulence
that can be grown from a known free energy source and dissipation mechanism in a controlled
manner.

The radial distribution of the local wavenumber spectra is obtained by integrating the two-
point spectra obtained at r = 3, 4, and 5 cm over all frequencies. The results of this procedure
are shown in figure 5. The data clearly show that the mean wavenumber kθ of the fluctuations
falls from finite values kθρS ≈ 1–2 at r = 3 cm (corresponding to an azimuthal mode number
m = 3–6), where the largest plasma pressure gradient is located, to kθρS ≈ 0 at r � 4 cm
(corresponding to m ∼ 0). These large azimuthal wavelength fluctuations correspond to the
very low frequency (<2 kHz) potential fluctuations that are seen in figure 1(d) in the region
3 < r < 6 cm, and they correspond to the linearly stable portion of the wavenumber spectrum
shown above in figure 4. These observations demonstrate that an m = 0 low frequency
oscillation in the plasma potential exists in the region between 4 and 6 cm. The radially
resolved data show that these oscillations have a definite radial structure. These fluctuations
are linearly stable and thus by implication must be maintained by some nonlinear process.
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Figure 2. Frequency and wavenumber resolved two-point spectrum obtained from floating potential
fluctuations at r = 3 cm.

We have used two different techniques to determine the existence of a velocity shear
layer. First, we measured the radial profile of the mean azimuthal fluctuation velocity using
time-delay estimate (TDE) techniques [38]. In this technique the density (or potential)
fluctuations at two azimuthal positions separated by 0.5 cm are sampled with high time
resolution (106 samples s−1) and then the small time incurred by the propagation of the
fluctuations between the two probes is measured. The velocity is then taken as the spatial
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Figure 3. Evolution of the total energy spectrum as the magnetic field is raised from the threshold
for onset of drift waves (400 G) to 1000 G where turbulent spectra are observed. Data obtained at
r = 3 cm.

separation divided by this measured time delay (determined by where the cross-correlation
function of the two channels peaks). The results are shown as the open diamond-shaped
symbols in figure 6. These data show that the azimuthal velocity has a strong radial
variation and is peaked at r = 3.5–4.5 cm, indicating the presence of a plasma shear layer
at this location. Similar measurements made using a series of fast (100 kHz) framed images
of plasma light emission show that this azimuthal fluctuation propagation is azimuthally
symmetric.

Second, in order to demonstrate that the plasma fluid is rotating (as opposed to simply
a propagation of fluctuations without any underlying fluid E × B flow), we have also used a
multi-sided Mach probe to infer the parallel and perpendicular Mach number profiles using
recently published techniques [73]. The ion fluid velocity is measured with a Mach probe that
is inserted along the radius of the plasma and rotated about the probe shaft axis on a shot-to-shot
basis. The probe is scanned across the plasma radius and the ratio RM = Isat(up)/Isat(down)

of collected ion saturation currents obtained from 180◦-opposed probes is measured as a
function of position. The procedure is then repeated for various angles θ thereby yielding a
measurement of RM(θ) as a function of radius. Here Isat (up) and Isat (down) denote the probe
tips that are located upstream (closer to the plasma source) and downstream (farther from
the plasma source), respectively. We then fit RM(θ) to a recent theory prediction [73] of the
form R = exp[K(sin �α/�α)(Mpar cos θ + Mperp sin θ)] using the parallel and perpendicular
Mach numbers Mpar and Mperp as the fitting parameters. Here �α denotes the acceptance
angle of an individual ion-collecting probe tip (�α ∼50◦ in our probe). An example of
such a fit to the data obtained at r = 3.5 cm is shown in figure 7, yielding Mpar = 0.29
and Mperp = 0.16. For our data presented here, we use Hutchinson’s model of ion collection
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Figure 4. Ion saturation current and floating potential azimuthal wavenumber spectra at 1000 G.
Data taken at r = 3 cm.

giving the constant K = 1.34 [41]. These measurements are then repeated at a variety of radial
positions, and the electron temperature is then used to translate the Mach number into a plasma
fluid velocity. The azimuthal velocity inferred using this technique is shown where the open
square data points in figure 6 and is found to agree with the TDE velocity at radii where the
pressure gradient is small, while in regions where the pressure gradient is significant, the TDE
velocity is larger than the Mach probe velocity, suggesting that the TDE technique is measuring
an E × B Doppler-shifted diamagnetic drift. A detailed paper on the relationship between
TDE velocity measurements and plasma fluid flow is in preparation and will be presented
elsewhere.

The experimental results thus show that a velocity shear layer exists in this plasma
(which has no external sources of momentum such as a cross-field current flowing between
a cathode and an anode) and that the velocity shear layer is azimuthally symmetric. This
shear layer is also strikingly similar to the one reported recently in a similar helicon plasma
device, measured unambiguously with laser induced flourescence [29]. The location of this
shear layer also coincides with the location of the m = 0 structure that was inferred from
the results shown earlier in figure 5 and, as we have shown elsewhere [78], the shearing
rate is sufficiently strong to affect the underlying turbulence in the vicinity of the shear
layer.

As we show below, this shear is damped by ion–neutral drag as well as by ion–ion
collisional viscosity. Some mechanism must exist in order to maintain the shear flow against
this damping. As discussed earlier, there are no externally driven currents in this experimental
apparatus. Thus attention naturally turns to the role that turbulent momentum transport plays
in possibly maintaining the shear flow.
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Figure 5. Azimuthal wavenumber spectra of floating potential fluctuations at r = 3, 4 and 5 cm.

4. The turbulent momentum conservation equation

In the presence of a finite ion–neutral momentum dissipation rate νi–n and finite ion–ion
collisional viscosity µii, the relationship between the radial profile of the mean azimuthal
plasma fluid velocity and the turbulent Reynolds stress is given by the time-averaged azimuthal
component of the ion momentum equation:

1

r2

∂

∂r
(r2〈ṼrṼθ 〉) = −υi–n〈Vθ 〉 + µii

∂2〈Vθ 〉
∂r2

+
1

r

∂〈Vθ 〉
∂r

− 〈Vθ 〉
r2

, (1)

where the brackets denote a time average and tildes fluctuating quantities, such that 〈Vθ 〉 is
the time-averaged azimuthal ion fluid velocity, νi–n is the ion–neutral collision rate and µii

is the ion viscosity. A detailed derivation of this equation is given in the appendix. Using
a four-tip Langmuir probe assembly (which allows us to measure density and electric field
fluctuations simultaneously) we have measured the electrostatic turbulent Reynolds stress
〈R〉 = 〈ẼrẼθ 〉/B2

0 (equal to −〈ṼrṼθ 〉 under the assumption that the convecting velocity
fluctuations are purely electrostatic) and the turbulent particle flux 〈�r〉 = 〈ñṽr〉 = 〈ñẼθ 〉/B0,
where Ẽr = �Vf/�xr is the fluctuating radial electric field taken as the difference between
the floating potentials measured with two tips separated radially by a distance �xr = 0.3 cm;
the fluctuating azimuthal electric field Ẽθ = �Vf/�xθ is measured similarly. Because we
are interested in the origins of azimuthally symmetric shear flows, the relevant time average
is taken to be the time required for a complete azimuthal rotation within the shear layer
(estimated here to be ∼ 0.4 ms for the conditions of our experiment). This time averaging
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Figure 6. Radial profile of the azimuthal velocity profile measured with time-delay estimation
technique (♦); Mach probe (�); Velocity profile inferred from turbulent momentum balance
analysis (——) and velocity profile predicted by collisional drift turbulence numerical simulation
(——). Mach probe experimental errors show 95% confidence interval from least squares fit. TDE
error bars determined from shot-to-shot scatter of the data.

process therefore includes only fluctuating components with m > 0 in the computation of
the Reynolds stress. Figures 8(a) and (b) show the measured 〈�r〉 and 〈R〉 profiles. All the
time-averaged data presented in this letter was obtained by averaging approximately 32 000
points of data sampled at 1 MHz taken with the probe assembly held fixed at 193 different
spatial locations. Because CSDX can operate in a steady-state fashion for much longer time-
scales, all our estimates of time-averaged quantities are extremely well converged, with the
statistical error bars generally being within the thickness of the plotted mean value curves.
The particle flux peaks in the region of the plasma pressure gradient, while the Reynolds stress
profile peaks slightly farther out radially. Note in particular that there appears to be a close link
between the fall off of radial particle flux and the onset of momentum transport via the Reynolds
stress, suggesting a potentially important link between these two fluxes. The detailed spatial
structure of the two fluxes is caused in part by significant changes in the zero-time delay cross-
correlation coefficient computed between the density and azimuthal electric field fluctuations
(figure 8(c)) or between the fluctuating azimuthal and radial electric fields (figure 8(d)). Both
cross-correlation coefficients pass through zero near r = 3.5 cm, thereby causing the associated
fluxes to also vanish at this location. This behaviour simply indicates that on average there
is no radially directed turbulent mixing of either density or azimuthal momentum fluctuations
across the r = 3.5 cm surface which, referring to figure 6, is seen to correspond to the location
of the beginning of the velocity shear layer. Thus there is indeed a ‘transport barrier’ at
this location both for particles as well as azimuthal momentum. Here the term transport
barrier refers to an elimination of the turbulent particle and momentum flux, as opposed to a
localized increase in the mean gradients, as is often the implied meaning in experiments on
fusion confinement devices. The small inwardly directed particle flux in the region beyond
the shear layer would be consistent with the existence of a small ionization source located
in this plasma region which supplies particles that are advected inwards towards the shear
layer.
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Figure 7. Ratio of upstream to downstream ion saturation current density versus angle of probe
tips with respect to the magnetic field. Data points show measured values and the solid line shows
a best fit to the theoretical expression shown in the figure.

Taking the measured Reynolds stress shown in figure 8, we can then solve equation (1)
for 〈Vθ 〉 if the viscosity and neutral damping rates are known. Using reasonable boundary
conditions (i.e. 〈Vθ 〉 → 0 at r = 0) the solution can be found numerically by integrating this
equation from r = 0 outwards. The ion–neutral momentum dissipation term is proportional to
the neutral gas density and ion–neutral momentum exchange cross-section. Since the neutral
gas presumably follows an ideal gas law, a measurement of the neutral gas temperature in the
centre of the plasma combined with a neutral gas pressure measurement at the wall can be
used to estimate the central neutral density. If the neutrals are close to room temperature at
the wall (which is a reasonable assumption) then the neutral gas density there can be easily
computed from the measured pressure. The ion collisional viscosity scales as Ni/T

1/2
i , where

Ni denotes the ion density and Ti denotes the ion temperature. Thus both the ion–neutral
and ion–ion collisional dissipation processes require measurement of neutral argon and singly
ionized argon in the central region of the plasma column.

These two temperatures were measured from a Doppler broadening of the 488 nm (Ar-II)
and 750 nm (Ar-I) emission lines using a high resolution spectrometer. Plasma light was
collected by an optical fibre connected to a collimating lens which collected light from a 0.5 cm
diameter chord that passed through the plasma centre 0.5 m downstream from the exit of the
plasma source. The fibre was connected to an ELIAS 10 m focal length echelle spectrometer
(manufactured by LTB Gmbh, Berlin, Germany), which consists of a 30 cm-wide echelle
grating configured in a Littrow configuration [30, 31]. The echelle grating with a focal length
of 10 m gives extremely high spectral resolution (λ0/�λ = 2.5×105, where �λ is the linewidth
at the wavelength λ0) giving a Gaussian instrumental FWHM of 1.7 pm for the lines of interest
here. However, this configuration gives overlapping or aliased spectra due to higher/lower order
light reflections within the optical train. In order to avoid this problem, a suitable optical band
pass filter was placed between the optical fibre and the instrument. For the conditions of our
experiment, collisional broadening and line splitting are negligible. Light was then collected
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Figure 8. Radial profiles of the measured (a) turbulent particle flux, (b) turbulent Reynolds stress,
(c) zero time-delay cross-correlation coefficent computed between density and azimuthal electric
field fluctuations and (d) zero time-delay cross-correlation coefficient computed between radial
and azimuthal electric field fluctuations. The random uncertainty in the particle flux and Reynolds
stress is similar in size to the symbols used to display the data.

from the strongest emission lines of Ar-I and Ar-II (750 nm and 488 nm, respectively) for a 30 s
integration period; the result was deconvolved from the instrument function, and the resulting
Gaussian lineshape was then used in a least squares fitting procedure to yield line-averaged
neutral and ion temperatures of 0.5 eV and 0.7 eV, respectively, for the neutral and singly
ionized argon. Detailed discussions of these measurements are being prepared for publication
elsewhere.

Using these temperatures, we estimate an ion viscosity µii = 3/10ρ2
i vii ≈ 4×104 cm2 s−1

in the central region of the plasma column. For a spatially uniform 3 mTorr fill pressure atTgas =
0.5 eV we estimate the average neutral gas density within the plasma as ngas = 4 × 1012 cm−3.
Note that this value corresponds to strong central gas depletion due to gas heating. Using
published data for the total ion–neutral scattering cross-section for argon [55] we then estimate
the ion–neutral momentum damping rate νi0 = ngasVthii(σ

CX
io + σ elas

io ) ≈ 6 × 103 s−1 in the
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Figure 9. Radial profile of ion–ion collisional viscosity used in turbulent momentum balance.

central plasma region. The ion and neutral temperatures are likely to be peaked at r = 0.
Since µii ∝ Ni/T

1/2
i we then surmise that, if the ion temperature profile has a similar shape to

the plasma density and electron temperature profiles, the ion viscosity is peaked in the plasma
centre and is smaller in the edge region. Exactly what shape the viscosity profile has depends
upon the details of the Ti profile. The simplest model for the ion viscosity is a step-like viscous
profile that is high in the plasma centre and smaller at the edge of the plasma. The location
of the step is constrained by the location of the grad-n0 region, while the on-axis values are
constrained by the central region estimates given above. The ion viscosity in the outer regions is
difficult to estimate because there are no reliable ion temperature measurements available from
this region. Furthermore, if the neutral gas behaves like an ideal gas, and given the likelihood
that the neutral gas temperature is higher in the centre and cooler near the plasma edge, we
can then conclude that the neutral gas density is likely depleted in the plasma centre, while
near the plasma edge the neutral gas density increases to values that correspond to 3 mTorr
at or near room temperature. Thus νi–n has a minimum in the plasma centre and increases in
the outer regions of the plasma. The central chord value of νi–n would then be approximately
equal to the value listed above.

Given these arguments and considerations, we assume a viscosity profile shown in figure 9.
We found somewhat surprisingly that the turbulent momentum conservation is insensitive to
the details of the ion-neutral flow damping profile, so we simply use a uniform value of
νi0 = 6 × 103 s−1 at all radii since we have no measurements of the neutral spatial profiles.
These dissipation profiles are then used in the numerical solution of the turbulent momentum
conservation equation given above. Numerically integrating this turbulent momentum balance
from r = 0 outwards then gives the time-averaged azimuthal ion fluid velocity profile shown as
the solid black line in figure 6. This result shows that a shear layer should exist in this plasma,
with a peak flow shear located approximately at r = 3.6 cm, coincident with a gradient in the
viscosity and the gradient in the Reynolds stress. The central (r < 3 cm) and outer (r > 5 cm)
portions of plasma column are then dragged along by viscosity by the outer sheared flow.

5. Turbulent simulations

The fluctuations in this experiment have been shown to be caused by collisional drift turbulence
that is sustained by the time-averaged electron pressure gradient and destabilized by electron–
ion Coulomb collisions [5]. This class of drift turbulence can be described within the framework
of fluid theory and shares the nonlinear dynamics that are thought to be representative of many
types of drift turbulence [39,40]. As shown in the literature [34] the dynamics of the turbulence
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are described by two coupled dimensionless nonlinear equations describing the evolution of
the internal energy (Wn

k = |nk|2) and the kinetic energy (Wφ

k = k2
⊥|φk|2). The governing

equations can then be written in dimensionless form as [34]

∂n

∂t
+

⇀

V · ⇀∇ n +
Vde

r

∂φ

∂θ
+ ω||(n − φ) = D∇2

⊥n, (2a)

∂∇2
⊥φ

∂t
+ (

⇀

V · ⇀∇)∇2
⊥φ + ω|| (n − φ) = −νi–n∇2

⊥φ + µii∇4
⊥φ, (2b)

where
⇀

V = − ⇀∇ φ × ẑ. The spatial scales have been normalized by ρs = Cs/�ci , where
Cs is the ion acoustic speed and �ci is the ion gyrofrequency and the time scales have been
normalized by Cs/Ln, where Ln is the density gradient scale length. The field quantities are
‘mixing-length normalized’ and are given by n = (Ln/ρs)ñ/〈n〉 and φ = (Ln/ρs)eφ̃/Te. In
addition, Vde is the diamagnetic (electron) velocity, Vthe is the electron thermal speed and here
µii represents the normalized ion viscosity. Note that we explicitly include the term νi–n to
denote the (normalized) linear damping of plasma motion due to ion–neutral collisions [27]
(which is neglected in most of the literature). In the limit of small ion Landau damping
(which is thought to be true for our experiment) there are three dimensionless parameters
which, in the absence of neutral collisions, determine the nonlinear dynamics of collisional
drift turbulence: (i) the normalized density gradient scale length ρS/Ln, (ii) the so-called
‘adiabatic parameter’ ω|| ≡ k2

||V
2

the
/υe (where υe is the electron collision frequency, so that

this parameter quantifies the degree to which the Boltzmann relation ne = n0 exp(−eφ/kBTe)

is maintained via parallel electron dynamics) and (iii) the normalized ion viscosity µii. Drift
turbulence occurs typically when ρS/Ln � 1 and µii � 1 (conditions that are marginally
satisfied in our experiment, where ρS/Ln ∼ 0.3–0.5 and µii ∼ 0.2–0.3 for the conditions
shown in figure 1) which then allow the convective derivative term to become important in the
fluid momentum equation. In the presence of neutral collisions (which can be important in
low-temperature partially ionized laboratory experiments such as ours) the dimensionless ion–
neutral momentum exchange collision frequency νi–n is also relevant, and should be much less
than one (νi–n ∼ 0.01 in our experiment). Note that this dissipation has the form of a frictional
drag, rather than a viscosity, and thus has a form that is identical to flow damping that occurs
in toroidal systems due to magnetic pumping and neoclassical viscosity [36]. In the presence
of finite parallel electron dissipation (ω||Ln/Cs ∼ 1 in our experiment), the electrons are no
longer able to short circuit a developing potential perturbation by rapidly moving along the
magnetic field. As a result the Boltzmann relation ñ = n0 exp(eφ̃/kBTe) breaks down, density
and potential fluctuations become decorrelated and a finite phase shift between these two field
quantities occurs, resulting in net transport due to the advection of density perturbations by
the associated velocity perturbations.

We have developed a numerical simulation of collisional drift turbulence using this model
for comparison with our experimental results. This code solves the Hasegawa–Wakatani
collisional drift turbulence model described above in the cylindrical geometry of our experiment
and includes ion–neutral flow damping. The code is two-dimensional (i.e. is in r–θ space)
and treats the poloidal direction spectrally (using a one-third rule to prevent aliasing) while
radial derivatives are found using finite differencing in order to retain the cylindrical geometry
of the experiment. The equations are solved by a split implicit/explicit scheme, where the
left-hand sides of equations (2a) and (2b) are first integrated by a second-order Runge–Kutta
(leapfrog) scheme (with the nonlinear convolutions calculated in real space), and then the
dissipative terms on the right-hand side are solved for implicitly [43]. Finite m fluctuations
are all assumed to have a single value of ω|| (equivalent to a single parallel wavenumber),
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while the m = 0 potential fluctuation is taken to have k|| = 0 (and so ω|| = 0 for these
fluctuations). The finite m mode amplitudes go to zero at r = 0 and r = a (where a is the
radius of the cylinder), while the m = 0 potential fluctuation amplitude vanishes at r = a

and ∂φm=0/∂r = 0 at r = 0. To mimic the effects of ionization sources which maintain the
equilibrium density profile and prevent quasilinear flattening, the m = 0 density fluctuation
term is not evolved so that the overall m = 0 density component is simply the imposed
equilibrium density 〈n〉 = n0 exp(−0.5r2/L2

n) (which gives a constant diamagnetic frequency
ω∗ = −m(ρsCs/r)(d ln〈n〉/dr) = m(ρsCs/L

2
n)). For the work shown here we have used 64

points in the radial direction and 128 azimuthal points (giving 42 meaningful poloidal modes)
and in normalized units, ω|| = 1, D = 0.05, νi–n = 0.03, µii = 0.4, ρs = 1 cm, Ln = 2 cm
(corresponding to the parameters used in the momentum balance analysis discussed above,
since Cs = 2 × 105 cm s−1 for the conditions of these experiments).

Using this simulation we have begun to numerically explore the nonlinear dynamics of
the drift turbulence/zonal flow interactions that are observed in this experiment. First, we
have compared the results obtained with this code during the initial linear phase (where
unstable modes grow exponentially) with results from a linear eigenmode code [78] which
has, in turn, been benchmarked against previously published results [23]. The result shows
that the simulation accurately reproduces the initial linear growth phase of the coherent drift
wave eigenmodes. Interestingly we find that inclusion of a small amount of radially sheared
azimuthal E × B drift in the linear eigenmodes solution will cause the linear eigenmodes to
twist. This effect is similar to that reported by the VINETA group [69], except that in their
work the twisting was due to a radial variation in the parallel electron dissipation rate. This
twisting is significant because theory indicates that the development of twisted anisotropic
fluid eddies is the signature of zonal flow formation from coherent fluid eddies [22,67]. Thus
it appears that any radial variation in either azimuthal E ×B drifts or in the parallel dissipation
rate creates the conditions necessary for the onset of zonal flows. Also, once we confirmed the
essential linear portions of the code, we benchmarked the nonlinear dynamics of the code by
confirming the dual cascade properties (i.e. internal energy to small scales, kinetic energy to
large) of the Hasegawa–Wakatani system in two dimensions, as predicted by theory [25, 48]
and observed in previous numerical studies [7]. In addition, we have reproduced the results
of [3, 35, 49], which showed the formation of large-scale structures and flows with kθ = 0.

Once these benchmarking activities were completed, we ran simulations of our
experiments. The geometry and conditions chosen for this simulation correspond to the
conditions in the CSDX device at a magnetic field of 1000 G (i.e. they correspond to
the equilibrium conditions shown in figures 1(a) and (b)). Figure 10 shows snapshots of
the fluctuating potential and density distribution during the initial linear growth phase, the
development of nonlinear coupling between modes and the formation of a strong zonal flow.
The results clearly show the initial development of fluctuations (figures 10(a) and (b)) consistent
with the linear eigenmodes analysis results which we have discussed elsewhere, the subsequent
development of a twisting pattern in the mode structure (figures 10(c) and (d)) and finally the
collapse of finite m-number drift fluctuations into an m = 0 sheared zonal flow along with a
few finite m modes (figures 10(e) and (f )).

To determine the degree to which these simulation results agree with the experimental
results, we have computed the time and flux-surface averaged azimuthal velocity profile from
the saturated state shown in figure 11(f ). The result shown as the red curve in figure 6 shows
several similarities to the experimental results. First, the simulation shows that a shear layer
should exist in the vicinity of r ∼ 3.6–4.0 cm. Second, the magnitude of the peak flow velocity,
and the radial shearing rate, is fairly close to the experimental result. Third, the central plasma
region then spins up due to plasma viscosity. The relative agreement between simulation and
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Figure 10. Time-evolution of density fluctuations (panels (a), (c) and (e)) and potential fluctuations
(panels (b), (d) and (f )) from a two-field collisional drift turbulence simulation. Panels (a) and
(b) show the early time where the fluctuations resemble the linear eigenmodes solution. Panels (c)
and (d) show the intermediate time where multiple eigenmodes interact nonlinearly, leading to the
emergence of a twisted density eigenmode structure. Panels (e) and (f ) show the emergence of a
sheared azimuthal flow from the merging of finite m-number vortices.

experiment is particularly surprising given the simplicity and ad hoc assumptions built into the
computational model. In addition, we have computed the azimuthal wavenumber spectrum of
the potential fluctuations at r = 3 cm from the simulation data. The result (figure 11) shows
that the potential fluctuation spectrum peaks at m = 3 and has significant spectral components
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Figure 11. Azimuthal wavenumber spectrum of the saturated state of figures 10(e)–(f ) at r = 3 cm.
The spectrum peaks at approximately the same location as seen experimentally in figures 4 and 5.
The discrete peaks at low wavenumber correspond to low order m = 1, 2, 3, . . . modes.

for m ranging from m = 0 up to m = 6–10 or so. This result is reasonably similar to the two-
point k-spectra estimates shown in figures 4 and 5. We therefore conclude that this collisional
drift turbulence simulation can reproduce the essential features of a turbulent-driven shear flow
in a simple configuration.

6. Discussion

As pointed out earlier, a complete demonstration of turbulent-generated shear flow requires
several theoretical predictions to be observed in experiment. First, the existence of a shear
flow with the correct symmetry properties (e.g. in a cylindrical plasma the shear flow would
be azimuthally symmetric) must be demonstrated. Second, the shear flow must be maintained
against damping mechanisms by the turbulent Reynolds stress. Third, the resulting shear flow
must be of sufficient magnitude that it reduces or eliminates turbulent transport across the shear
layer. Finally, this process should be consistent with a relevant theoretical description of the
turbulence generation and shear flow maintenance mechanisms. The results presented above
are, to our knowledge, the first to satisfy all of these requirements and thus provide a detailed
experimental verification of the essential elements of sheared zonal flow generation from drift
turbulence in a simple plasma experiment.

Because these results rely critically on the use of Langmuir probes, effects such as non-
thermal electron distribution functions can change the relationship between the floating and
space potentials and thus cause a systematic error in the measurement of the fluctuating electric
field. Such errors would then be carried into the measurements of turbulent transport and thus
could potentially impact the conclusions reached in this work. The source for fast electrons
would obviously be the plasma source RF antenna region, which is located about 1 m upstream
from our probe measurements. The mean free path for electrons that are resonant with the
propagating helicon waves (i.e. electrons with energies of tens of electronvolts) in these types
of plasmas is of the order of a few tens of centimetres. Thus we would expect that any such
particles would likely suffer thermalizing collisions before reaching our probes, minimizing
the impact of such effects. We also point out that in a very detailed study [4], the electron
distribution function in high density high power helicon plasmas very similar to ours was
found to be Maxwellian up to energies E ∼ 10kBTe (i.e. up to 25 eV or so), and the fraction
of fast (E > 25 eV) electrons had to be below the detection limit of 2 × 10−4. Such a



S68 G R Tynan et al

fraction of fast electrons in our plasma would not produce a large effect on the probe signals.
Furthermore, to produce a spurious electric field from the difference in measured Vfloat, any
such particles would have to have a different density and/or energy at two probes located 0.5 cm
apart. The generation of such particles is thought to occur from a wave–particle resonance in
a helicon source, which would generate fast particles in the parallel direction. Helicon waves
have a transverse wavelength of the order of the plasma radius, implying that fast particle
generation rates would vary only over this spatial scale. Thus it seems unlikely that any such
fast particles (whose density is very low as shown by the work of Blackwell et al ) would then
have significantly different distribution functions over such a distance. We conclude that this
evidence suggests that fast electrons are probably not a concern here.

In our view, the most serious concern from all probe measurements of fluctuation-induced
transport arises from the effect of electron temperature fluctuations. Clearly, if the electron
temperature fluctuates then the difference between Vspace and Vfloat will vary in time, and
electron temperature fluctuations will mask themselves as potential (and E-field) fluctuations.
We do not know of any reliable Te fluctuation techniques that would allow simultaneous
unperturbed Vfloat measurements. The seriousness of this effect on our results depends upon
the phase and magnitude of the Te fluctuations relative to the potential fluctuations as has been
discussed in many other places (see, e.g. [60]). Recent work [74] suggests that the phase of
Te fluctuations relative to space potential fluctuations is such that the gradient in fluctuating
floating potential provides a good proxy for the true fluctuating electric field. In the work by
Light [53], the electron temperature fluctuations were found to be small in a similar helicon
plasma device. If electron temperature fluctuation effects were causing a systematic error
in our inferred electric fields and turbulent fluxes, then it would be surprising that the errors
worked out to give results that are consistent with turbulent momentum balance and numerical
simulation. These observations then weigh against this concern as a serious issue in this work.
We note that recently multiple heavy ion beam probe measurements have been used to infer
fluxes and zonal flows in confined plasmas [24]. However, lacking such measurements, we
provide the results from the Vfloat fluctuations and then point out the assumption of negligible
Te fluctuations to the reader. Clearly it would be desirable and useful to investigate this issue
further.

7. Conclusions

We have observed the formation of an azimuthally symmetric shear flow in a cylindrical
magnetized plasma column that does not have any identifiable external momentum sources.
This shear flow is found to be sustained against ion–ion viscosity and against ion–neutral drag
via the measured turbulent transport of momentum carried both by the turbulent particle flux and
the turbulent Reynolds stress. Because the origins of the turbulence have been identified in this
experiment, we infer the existence of a nonlinearly generated transfer of energy from the higher
wavenumber turbulent fluctuations into the range of smaller wavenumbers associated with the
shear flow. In addition, we can also then justify the use of a two-field fluid-based Hasegawa–
Wakatani model for the drift fluctuations. A numerical solution of this model for the conditions
of our experiment indicates that such turbulent-driven shear flows spontaneously arise in a
simple plasma configuration via the progressive merger of tilted anisotropic vortices that are
driven by a collisional drift instability. This phenomena is simply a real-space manifestation
of an inverse energy transfer occurring in Fourier space. The magnitude and location of this
shear flow is in good agreement with our experimental observations. Taken together, these
experimental and computational results support the essential theoretical features expected for
zonal flow generation from drift turbulence in magnetized plasmas [20].



Shear flow in a plasma device S69

There are several issues to explore in the future. First, with appropriate probe array
geometries and adequate statistics, the nonlinear energy transfer in a two-field turbulent system
can be measured and then compared with the simulations. This effort would address the
key underlying nonlinear dynamics of the zonal flow formation and may shed light upon
the saturation mechanisms that govern zonal flows. Second, we have not yet made any
measurement of the axial wavenumber of the shear flow. Careful alignment of probes would
allow this important quantity to be measured and could then allow us to rule out other possible
types of azimuthally symmetric oscillations (e.g. ion acoustic waves). Third, fast-framing
imaging can be performed of the plasma density fluctuations, and two-dimensional time-
delay estimation techniques can be used to infer the turbulent velocity field. If successfully
implemented, such algorithms would then allow similar studies to be carried out using imaging
diagnostics on tokamak devices. Finally, our recent computational studies of this system
indicate that the turbulence and shear flow can exhibit a predator–prey phenomena. Non-
stationary data analysis techniques need to be developed and used with our datasets (e.g.
wavelet analysis, conditional sampling) in order to examine such dynamics experimentally. In
particular, the code suggests that the intensities of the turbulence and zonal flow oscillate with
a definite phase relation (as expected from the predator–prey formalism and seen previously by
Biskamp and Zeiler [3]), a prediction which one can look for in the experimental data. Recent
experimental studies in our device also suggest that the fluctuations become highly intermittent
or bursty outside of the shear layer. The present simulations completely fail to capture these
potentially important dynamics, and thus additional experimental and computational work is
needed on this subject. Finally, it would be interesting to search for similar dynamics in a
low-temperature toroidal device in order to avoid end effects and also to examine the effect
toroidicity has upon the turbulence, shear flow and coupling between these two types of plasma
fluctuations.

Appendix A. derivation of the azimuthal momentum balance equation

In this appendix, we show explicitly the derivation of the azimuthal momentum balance
equation used in the text (equation (1)). We begin with the most general form of the ion
momentum equation

nM
d

⇀

V i

dt
= − ⇀∇ pi+

⇀∇ · ↔
π +en(

⇀

E +
⇀

V i × ⇀

B)+
⇀

Ri, (A1)

where n is the ion density, pi is the pressure,
↔
π is the viscosity tensor and

⇀

Ri the net force on
ions due to collisions with other species. For a highly collisional (but not fully ionized) plasma
such as the one in CSDX, it can be reduced to
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where νi–n is ion–neutral collision rate, the neutrals have been assumed to have negligible
velocity and µii is the ion viscosity. If we assume that low ion temperature (Ti � 1 eV in
CSDX, Te ≈ 3 eV) allows us to neglect ion pressure fluctuations, then density can be removed
entirely from the equation, and we can write the azimuthal component of equation (A2) as
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If we now take the time-average of equation (A3), denoting average quantities within brackets,
and fluctuating quantities with tildes and further assume that

1. the time-averaged quantities have only a radial spatial dependence and

2. there is no mean radial flow 〈Vr〉.
Equation (A3) can then be expressed as〈
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∂Ṽθ

∂r
+

Ṽθ
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∂Ṽθ

∂θ
+ Ṽz
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Ṽr Ṽθ

r

〉
= −υi–n〈Vθ 〉 + µii

(
∂2〈Vθ 〉
∂r2

+
1

r

∂〈Vθ 〉
∂r

− 〈Vθ 〉
r2

)
.

(A4)

The final assumption is that the fluctuating velocities are
⇀

E × ⇀

B dominated (i.e. ignoring
corrections due to polarization/inertia and dissipative terms) and therefore incompressible

since
⇀

B = Bẑ in CSDX, so we can then make use of the following relation:
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Adding the time average of equation (A5) to the left-hand side (LHS) of equation (A4), we
find
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+ Ṽz

∂Ṽθ
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where we have made explicit use of our assumption that all time-averaged quantities have
no azimuthal or axial gradients. Therefore, the time averaged version of the ion azimuthal
momentum equation is given by
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